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Abstract. Dissipative one-dimensional maps may exhibit special points (e.g., chaos threshold) at which
the Lyapunov exponent vanishes. Consistently, the sensitivity to the initial conditions has a power-law
time dependence, instead of the usual exponential one. The associated exponent can be identified with
1/(1− q), where q characterizes the nonextensivity of a generalized entropic form currently used to extend
standard, Boltzmann-Gibbs statistical mechanics in order to cover a variety of anomalous situations. It has
been recently proposed (Lyra and Tsallis, Phys. Rev. Lett. 80, 53 (1998)) for such maps the scaling law
1/(1 − q) = 1/αmin − 1/αmax, where αmin and αmax are the extreme values appearing in the multifractal
f(α) function. We generalize herein the usual circular map by considering inflexions of arbitrary power z,
and verify that the scaling law holds for a large range of z. Since, for this family of maps, the Hausdorff
dimension df equals unity for all z in contrast with q which does depend on z, it becomes clear that df
plays no major role in the sensitivity to the initial conditions.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.20.-y Statistical mechanics –
05.70.Ce Thermodynamic functions and equations of state

1 Introduction

Whenever a physical system has long-range interactions
and/or long-range microscopic memory and/or evolves in
a (multi)fractal-like space-time, the extensive, Boltzmann-
Gibbs (BG) statistics might turn out to be inadequate
in the sense that it fails to provide finite values for rele-
vant thermodynamical quantities of the system. In order
to theoretically deal with nonextensive systems of this (or
analogous) kind, two major formalisms are available: the
so-called quantum groups [1] and the generalized thermo-
statistics (GT), proposed by one of us a decade ago [2].
This two formalisms present in fact deep connections [3].
We focus here the GT. Within this framework, nonex-
tensivity is defined through a generalized entropic form,
namely

Sq = k
1−

∑W
i=1 p

q
i

q − 1
(q ∈ R) (1)

where k is a positive constant and {pi} is a set of prob-
abilities associated to W microscopic configurations. We
can immediately check that the q → 1 limit recovers the
usual, extensive, BG entropy −k

∑W
i=1 pi ln pi. Also, if a

composed system A+B has probabilities which factorize
into those corresponding to the subsystems A and B, then
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Sq(A+B)/k = Sq(A)/k+Sq(B)/k+(1−q)Sq(A)Sq(B)/k2.

This property exhibits the fact that q characterizes the
degree of nonextensivity of the system.

Especially during the last five years, a wealth of works
have appeared within this formalism. In fact, it is possi-
ble to (losely) classify these works as follows: (i) Some
of them [4] address the generalization of relevant con-
cepts and properties of standard thermostatistics, such as
Boltzmann’s H-theorem, fluctuation-dissipation theorem,
Onsager reciprocity theorem, among others; (ii) Other
GT works [5] focus applications to some physical systems
where BG statistics is known to fail (stellar polytropes,
turbulence in electron-plasma, solar neutrino problem, pe-
culiar velocities of spiral galaxies, Levy anomalous diffu-
sion, among others), and yields satisfactory results; (iii)
Finally, an area of interest which is progressing rapidly,
addresses the long standing puzzle of better understand-
ing the physical meaning of the entropic index q. This
line concerns the study of nonlinear dynamical systems
(both low [6–9] and high [10,11] dimensional dissipative
ones, as well as Hamiltonian systems [12]) in order to clar-
ify the connection between q, the sensitivity to the initial
conditions and a possible (multi)fractality hidden in the
dynamics of the system. This paper belongs to the last
class of efforts and is organized as follows. In Section 2
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we briefly summarize recent related results. In Section 3
we introduce a new map which generalizes the circular
one, and study its main properties. Finally, we conclude
in Section 4.

2 Power-law sensitivity to initial conditions

The most important dynamical quantities that are used to
characterize the chaotic systems are the Lyapunov expo-
nent λ1 and the Kolmogorov-Sinai entropy K1 (the mean-
ing of the subindex 1 will soon become transparent). Let
us define, for a one-dimensional map of the real variable
x, the quantity ξ(t) ≡ lim∆x(0)→0

∆x(t)
∆x(0) , where ∆x(0)

and ∆x(t) are discrepancies of the initial conditions at
times 0 and t respectively. It can be shown that, under
quite generic conditions, ξ satisfies the differential equa-
tion dξ/dt = λ1 ξ, hence ξ(t) = exp(λ1t). Consequently,
if λ1 < 0 (λ1 > 0) the system is said to be strongly
insensitive (sensitive) to the initial conditions. Similarly,
for a dynamical system under certain conditions, we can
define K1 as essentially the increase, per unit time, of
S1 ≡ −

∑W
i=1 pi ln pi. Furthermore, it can be shown that,

with some restrictions, K1 = λ1 if λ1 ≥ 0 and K1 = 0 oth-
erwise. This is frequently referred to as the Pesin equal-
ity [14].

The case on which we are focusing in the present work
is the so-called marginal case, corresponding to λ1 = 0.
It has been argued [6–8] that, in this case, the differential
equation satisfied by ξ is dξ/dt = λq ξ

q, hence

ξ(t) = [1 + (1− q)λqt]1/(1−q) , (2)

where λq is the generalized Lyapunov exponent. One can
verify that q = 1 recovers the standard, exponential case
whereas q 6= 1 yields a power-law behavior. If q > 1 (q < 1)
the system is said to be weakly insensitive (sensitive) to
the initial conditions. (Results which are consistent with
the present q < 1 case have since long been observed [13]
in some logistic-like maps). It is worth to mention that
at the onset of chaos ξ(t) presents strong fluctuations re-
flecting the fractal-like structure of the critical dynamical
attractor and equation (2) delimits the power-law growth
of the upper bounds of ξ.

For the marginal cases with λ1 = 0, including period
doubling, tangent bifurcation and chaos threshold, it has
been introduced a generalized Kolmogorov-Sinai entropy
Kq as the increase per unit time of Sq. It has been argued
that there is a proper generalized entropy Sq with q 6= 1
that depicts a finite asymptotic variation rate at these
marginal points . Finally, for this anomalous case, it has
been proposed [6] that the Pesin equality itself can be
generalized as follows: Kq = λq if λq ≥ 0 and Kq = 0
otherwise.

Recently, these ideas have been applied to some
dissipative one-dimensional maps (a logistic-like and a
periodic-like map, sharing the same universality class,
as well as the standard circular map, which belongs to
a different universality class), and the numerical results

suggested a close relationship between the nonextensivity
parameter q and the fractal (Hausdorff) dimension df as-
sociated with the dynamical attractor [7–9]. Very specifi-
cally, in those examples, when df approaches unity (which
is the Euclidean dimension of the system) from below then
q also approaches unity from below, and does that in a
monotonic manner. Naturally, this fact strongly suggests
that the validity of the statistical q = 1 (BG) picture is in-
timately related to the full occupancy of the phase space.
However, an important question which remains open is
whether the full occupancy is sufficient for having a BG
scenario. We will show here that it is not!

Actually, the fractal dimension df gives a poor descrip-
tion of the complexity of critical dynamical attractors and
a multifractal formalism is needed in order to reveal its
complete scaling behavior. In this formalism each moment
of the probability distribution (integrated measure) has a
contribution coming from a particular subset of points of
the attractor with fractal dimension f . Using a partition
containing N boxes, the content on each contributing box
scales as N−α. The multifractal measure is then charac-
terized by the continuous function f(α) which reflects the
fractal dimension of the subset with singularity strength
α (for details see [15]).

Recently a new scaling relation has been proposed [8],
namely

1
1− q =

1
αmin

− 1
αmax

, (3)

where αmin and αmax are the extremes of the multifractal
singularity spectrum f(α) of the attractor which govern
respectively the scaling behavior of the more concentrated
and more rarefied regions on the attractor. The above re-
lation clearly indicates that once the scaling properties of
the dynamical attractor are known, one can precisely infer
the proper entropic index q that must be used for other
purposes. In what follows we will introduce a new family
of generalized circular maps characterized by an inflexion
power z. For this family of maps, the critical attractors
fully occupy the whole phase space, i.e., df (z) = 1 for all
z and nevertheless they exhibit a power-law sensitivity to
initial conditions with q < 1. Further, we will compute the
scaling properties of the critical attractors and show that
our results are consistent with the scaling relation (3).

3 A family of circular-like maps

The circle map is an iterative mapping of one point on a
circle to another of the same circle. This map describes dy-
namical systems possessing a natural frequency ω1 which
are driven by an external force of frequency ω2;Ω ≡ ω1/ω2

is known as the “bare” winding number. These systems
tend to mode-lock at a frequency ω∗1 and ω ≡ ω∗1/ω2 is
known as the “dressed” winding number. The standard
circle map, for one-dimension, is given by

θt+1 = Ω + θt −
K

2π
sin(2πθt) mod(1), (4)

with 0 < Ω < 1 ; 0 < K < ∞. For K < 1 the circle
map is linear at the vicinity of its extremal point and
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Fig. 1. The values of the “bare” winding number Ωc as a
function of z for the generalized circle maps.

exhibits only periodic motion. From now on we take K =
1, the onset value above which chaotic orbits exist. For this
map, once mode-locked, ω = limt→∞(θt+1 − θt) remains
constant and rational for a small range of the parameter
Ω with the “dressed” versus “bare” winding number curve
exhibiting a “devil staircase” aspect [16] (if θt+1 < θt then
one shall use ω = 1+θt+1−θt in order to leave it mod(1)).
At the onset to chaos, a set of zero measure and universal
scaling dynamics is produced at irrational dressed winding
numbers which have the form of an infinite continued-
fraction expansion

ω =
1

n+ 1
m+ 1

p+...

, (5)

with n,m, p, ... integers. The best studied one is when ω
equals the golden mean, i.e., ωGM = (

√
5−1)/2 (n = m =

p = ... = 1) [17,18]. It is worth mentioning that the golden
mean is the asymptotic ratio between consecutive numbers
of the Fibonacci series (limn→∞ Fn/Fn+1 = (

√
5 − 1)/2,

where F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2). In or-
der to determine the bare winding number at this criti-
cal point, we iterate the map for a large number of time
steps (106 steps) starting with θ0 = 0 and use a linear
regression to numerically compute ω. The bare winding
number Ω is then adjusted to have the renormalized wind-
ing number ω equal to the golden mean, which results in
Ωc = 0.606661... With these parameters, the standard
circle map has a cubic inflexion (z = 3) in the vicinity of
the point θ̄ = 0.

It is well known that the critical properties of circle
maps depend on the order z of its inflexion point [19,20].
In this work we will investigate a generalized version of
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Fig. 2. Box counting graph for determining the fractal dimen-
sion df of the critical attractor for typical values of z.

the circle map which can be defined as

θt+1 = Ω +
[
θt −

1
2π

sin(2πθt)
]z/3

, (6)

where z > 0 (z = 3 reproduces the standard case). For
every value of z, the golden mean of ω corresponds to
different “bare” winding numbers, which we call as Ωc. In
order to determine these critical values of Ω, one searches,
within a given precision (12 digits in our calculations), the
value of Ω corresponding to ωGM with the same precision.
The calculated values of Ωc, as a function of z, are shown
in Figure 1. The numerical values are indicated in Table 1.
We remark that, in the limit z → 0 (z → ∞) we verify
that Ωc ∝ z1/2 (1−Ωc ∝ 1/zβ with β ' 0.41).

For our present purpose, a very important feature of
this map is that, for every value of z, the critical attractor
visits the entire circle (0 < θt (mod 1) < 1) and therefore
has a support fractal (Hausdorff) dimension df = 1. The
calculated values of df , using a box counting algorithm,
are indicated in Figure 2 which shows that the Hausdorff
and box counting dimensions of the critical attractor co-
incide. In what concerns the sensitivity to the initial con-
ditions, the function ξ(t) is given by

ln ξ(t) = ln
∣∣∣∣dθNdθ0

∣∣∣∣ =
N∑
t=1

ln

{
d
dθ

[
θt −

1
2π

sin(2πθt)
]z/3}

=
N∑
t=1

ln

{
z

3

[
θt −

1
2π

sin(2πθt)
] z

3−1

[1− cos(2πθt)]

}
(7)

and displays, for Ω = Ωc, a power-law divergence, ξ ∝
t1/(1−q), from where the value of q can be calculated
by measuring, on a log-log plot, the upper bound slope,
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Table 1. Our best numerical values for Ωc, αF, αmin, αtop, αmax and q from both the scaling relation (3) and from the sensitivity
function (7) for various z. It is worthy to mention that we numerically verify that, for z ≥ 3, αtop ≥ [αmin αmax]1/2 (the equality
appears to hold for z = 3).

z Ωc αF αmin αtop αmax q q
(Eq. (3)) (Eq. (7))

3.0 0.606661063469... 1.289 0.632 1.096 1.895 0.05± 0.01 0.05 ± 0.01
3.5 0.629593799039... 1.258 0.599 1.124 2.097 0.16± 0.01 0.15 ± 0.01
4.0 0.648669091983... 1.234 0.572 1.167 2.289 0.24± 0.01 0.24 ± 0.01
4.5 0.664861001064... 1.218 0.542 1.213 2.440 0.30± 0.01 0.30 ± 0.01
5.0 0.678831756505... 1.205 0.516 1.266 2.581 0.36± 0.01 0.36 ± 0.01
5.5 0.691048981515... 1.195 0.491 1.314 2.701 0.40± 0.01 0.40 ± 0.01
6.0 0.701853340894... 1.185 0.473 1.351 2.838 0.43± 0.01 0.44 ± 0.01
7.0 0.720182442561... 1.170 0.438 1.451 3.065 0.49± 0.01 0.50 ± 0.01
8.0 0.735233625356... 1.158 0.410 1.518 3.280 0.53± 0.01 0.53 ± 0.01

(a)

Fig. 3. The plot of ln ξ(N) versus lnN . (a) for z = 4.5 and (b) for z = 6.

1/(1− q). In Figure 3, the z = 4.5 and z = 6 cases have
been illustrated; see also Table 1.

In order to check the accuracy of the scaling relation
(3), one needs to determine the αmin and αmax values of
the f(α) curve. Therefore, one has to study the structure
of the trajectory θ1, θ2, ..., θi, ... and to estimate the singu-
larity spectrum (strength of singularities α and their frac-
tal dimensions f) of this Cantor-like set. To perform the
numerical calculation we truncate the series θi at a chosen
Fibonacci number Fn (we recall that Fn/Fn+1 gives the
golden mean and therefore defines the proper scaling fac-
tor). The distances li between consecutive points of the set
define the natural scales for the partition with measures
pi = 1/Fn attributed to each segment. After that, the
singularity spectrum can be directly obtained following
a standard prescription [15]. In general, supα f(α) = df

and, in the present case, f(αmin) = f(αmax) = 0. We de-
fine αtop through f(αtop) = df .

However, the situation for the generalized circle map is
somewhat different than that of the standard circle map in
the sense that the standard one has a fast convergence of
the f(α) curve when larger number of iterations are con-
sidered, whereas the generalized map presents only a slow
and oscillatory convergence. An example of a sequence of
f(α) curves obtained from increasing number of iterations
is shown in Figure 4. Notice its non-monotonic behavior,
specially near the upper edge. In Figure 5, we plot the
numerically obtained values of αmin, αtop and αmax as
a function of 1/ lnN , where N is the number of itera-
tions. From these data, we are not able to accurately esti-
mate their asymptotic values for large map inflexion z. In
Figure 6 we plot the extrapolated f(α) curves for typical
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987.
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and αmax (top three lines) from the singularity spectra ob-
tained from distinct number of iterations and typical values of
z. Notice the slow and oscillatory convergence.

values of z. Although these show the main expected trends
of the singularity spectra, namely z-dependent shape but
df = 1 for all z, their extremal points may need further
corrections. We shall point out that this feature is inher-
ent to the numerical method used to estimate the f(α)
curve representing the singularity strengths of a multi-
fractal measure. Its extremal points are governed by the
scaling behavior of the most concentrated (αmin) and most
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Fig. 6. The extrapolated f(α) curves for typical values of
the map inflexion z. Notice that, although the shape is z-
dependent, they present df = 1 for all z. The solid lines corre-
spond to f(α) = 1 and f(α) = α. The dotted lines are guides
to the eye.

rarefied (αmax) sets in the measure, the latter being usu-
ally poorly sampled. Further, this oscillatory convergence
may also be related to the non-analyticity of the present
generalized circle map which has inflexion z only at the
right side of θ = 0, but remains with a cubic inflexion on
its left.

An alternative method for computing the extremal
values of the singularity strengths α can be obtained by
studying how the distances around θ = 0 scale down as
the trajectory θi is truncated at two consecutive Fibonacci
numbers, Fn, Fn+1. Shenker has found that this distance
shall scale by a universal factor αF(z) [17] (F stands for
Feigenbaum). For z > 3, the region around the right side
of θ = 0 corresponds to the most rarefied one so that
l−∞ ∼ [αF (z)]−n. The corresponding measure scales as
p−∞ = pi = 1/Fn ∼ (ωGM)n, which leads to [8,15,21]

αmax =
ln p−∞
ln l−∞

=
lnωGM

ln [αF(z)]−1
· (8)

Following along the same lines, the most concentrated re-
gion on the set shall scale down as l+∞ ∼ αF(z)−zn while
p+∞ ∼ [ωGM]n, so that

αmin =
ln p+∞
ln l+∞

=
lnωGM

ln [αF(z)]−z
· (9)

Equations (8, 9) imply

αmax/αmin = z. (10)

In Figure 7 we show, for a large value of the map inflex-
ion (z = 8), the values of θn, for θ0 = 0, together with the
power-law fitting of the critical sequence of the distances
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Fig. 7. The sequence θt as a function of t for z = 8. The
minimal distance to θ = 0 scales down as t−0.305. Using that
Fn ∼ ω−nGM for large n one obtains that l−∞ ∼ α−nF , with
αF(z = 8) = 1.158.

from the right side of θ = 0. The data provide an accurate
estimation of the universal factor αF(z = 8) = 1.1568 from
which precise values of αmin and αmax can be inferred. In
Table 1 we list the results for 3 < z < 8, together with
the values of αtop from the extrapolated f(α) curves and
q obtained from both the scaling relation (3) and from the
sensitivity function (7). Notice that the scaling relation (3)
is satisfied for all z (see also Fig. 8), just like the case of the
logistic-like maps [8]. Furthermore, these results indicate
two other important points: (i) Even though the fractal
dimension of the support df is Euclidean (i.e., df = 1) for
all z, the system sensitivity to initial conditions is still z-
dependent. (ii) What matters is αmin and αmax, and not
df , in other words, what precisely controls the entropic
index q is not df but the sensitivity to initial conditions,
reflected by the multifractal nature of the attractor.

4 Conclusions

In this paper, we contribute to the field of low-dimensional
dissipative systems by introducing a convenient general-
ization (with inflexion power z) of the standard circular
map and then studying its critical point (analogous to
the chaos threshold of logistic-like maps). More precisely,
we have numerically studied its sensitivity to the initial
conditions and have shown that it is given by a power-
law (ξ ∝ t1/(1−q)) instead of the usual exponential be-
havior. Moreover, we have shown that this example, as
the logistic-like maps, satisfies the scaling law given in
equation (3). Although q, αmin and αmax depend on z,
df does not. This is a quite important result because it
illustrates that, for having a Boltzmann-Gibbs scenario
(q = 1), it is not enough to fully occupy the phase space

1/(1−q)
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Fig. 8. 1/αmin − 1/αmax versus 1/(1 − q) values from the
sensitivity function. The straight line represents the scaling
prediction (Eq. (3)).

during the dynamical evolution of the system. What is es-
sentially necessary is to have a quick, exponential-like oc-
cupation of the phase space, so that ergodicity and mixing
are naturally attained.

In addition to this, it is worth mentioning that there
are also other efforts along this line which address high-
dimensional dissipative systems, namely those exhibiting
self-organized criticality [22]. Amongst them, the study of
the Bak-Sneppen model for biological evolution [10] and
the Suzuki-Kaneko model for the battle of birds defending
their territories [11] can be enumerated. In both cases it
is shown that, at the self-organized critical state, a power-
law sensitivity to initial conditions emerges, like in the
present case.

It should be emphasized that these ideas seem to be
valid and applicable not only to low- and high-dimensional
dissipative systems but also to conservative (Hamiltonian)
systems with long-range interactions. This fact has been
illustrated very recently [12] on the long-range classical
XY ferromagnetic model, whose entire Lyapunov spec-
trum collapses (for an infinitely wide energy interval) to
zero at the thermodynamic limit if (and only if) the range
of the interactions is sufficiently long. As a final remark
it should be of great interest to extend the present ideas
to Hamiltonian systems in the vicinity of a second or-
der critical point which exhibit also a power-law sensitiv-
ity to initial conditions without an evident breakdown of
Boltzmann-Gibbs scenario. Further efforts focusing, along
these lines, both dissipative and conservative systems are
welcome.
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